#!/usr/bin/env python from __future__ import division,absolute_import import rhinoscriptsyntax as rs from math import * import sys #simple class for vec2 class V2(object): def __init__(self,*args): if len(args)>1: self.x = args[0] self.y = args[1] else: self.x = args[0][0] self.y = args[0][1] self.p3l = [self.x,self.y,0] def __add__(self,other): return V2(self.x+other.x,self.y+other.y) def __sub__(self,other): return V2(self.x-other.x,self.y-other.y) def __mul__(self,other): try: return V2(self.x*other.x,self.y*other.y) except(AttributeError): return V2(self.x*other,self.y*other) def __rmul__(self,other): try: return V2(self.x*other.x, self.y*other.y) except(AttributeError): return V2(self.x*other,self.y*other) def __getitem__(self,index): return [self.x,self.y][index] def __repr__(self): return "V2(%.6f,%.6f)"%(self.x,self.y) def rotate(self,th): return V2(self.x*cos(th)-self.y*sin(th), self.x*sin(th)+self.y*cos(th)) def rotate90(self): return V2(-self.y,self.x) def rotate_p(self,b,th): return b + (self-b).rotate(th) def magnitude(self): return sqrt(self.x*self.x + self.y*self.y) def normalized(self): return self*(1./self.magnitude()) def dot(self,other): return self.x*other.x + self.y*other.y def cross(self,other): return self.x*other.y - self.y*other.x def angle_between(self,other): #unsigned angle between two vectors c = self.cross(other) return atan2(c,self.dot(other)) def projected_onto(self,other): return ((self.dot(other))/(other.dot(other)))*other def projected_orthogonal_to(self,other): return self - self.projected_onto(other) def close(self,other,tol=1e-6): return (abs(self.x-other.x)<tol) and (abs(self.y-other.y)<tol) def p3lz(self,z): return [self.x,self.y,z] # a few helper functions def line(p1,p2,layer,bridge_w=0,cut_w=0): d = p2-p1; dl = d.magnitude() if dl==0: return None dn = d.normalized() if bridge_w==0 or cut_w==0: rs.CurrentLayer(layer) return rs.AddLine(p1.p3l, p2.p3l) else: rs.CurrentLayer(layer) output = []; dist = bridge_w ds = [] while dist < dl-2*bridge_w:#-cut_w: ds.append((dist, dist+cut_w)) #print bridge_w, (p1+dist*dn).p3l , (p1+(dist+bridge_w)*dn).p3l dist += cut_w+bridge_w #leftover = dl-bridge_w-cut_w - dist + cut_w+bridge_w leftover = dl-bridge_w - dist + cut_w+bridge_w for pair in ds: output.append(rs.AddLine( (p1+(pair[0] + leftover/2)*dn).p3l , (p1+(pair[1]+ leftover/2)*dn).p3l) ) return output def circle(c,d,layer): rs.CurrentLayer(layer) return rs.AddCircle(c.p3l, .5*d) def arc(c,d,th1,th2,layer): rs.CurrentLayer(layer) p1 = c + d/2*V2(cos(pi/180.*th1),sin(pi/180.*th1)) p2 = c + d/2*V2(cos(pi/180.*th2),sin(pi/180.*th2)) pm = c + d/2*V2(cos(pi/180.*(th1+th2)/2),sin(pi/180.*(th1+th2)/2)) return rs.AddArc3Pt(p1.p3l,p2.p3l,pm.p3l) def filleted_hex(c,R,r,layer): crvs = [] x = r/sqrt(3) for i in range(6): v0 = R*V2(cos(i*2*pi/6),sin(i*2*pi/6)) v1 = R*V2(cos((i+1)*2*pi/6),sin((i+1)*2*pi/6)) d = (v1 - v0).normalized() crvs.append( line( c+v0 + x*d, c+v1 - x*d, layer) ) crvs.append( arc( c+v0-2*x*v0.normalized(),2*r,-30+i*60,30+i*60, layer) ) return crvs #main def main(): rs.AddLayer('magnets_a',(255,0,0)) rs.AddLayer('magnets_b',(0,255,255)) rs.AddLayer('holes',(0,255,0)) rs.AddLayer('coils',(0,0,255)) rs.AddLayer('frame',(255,0,255)) mag_d = 3.12 #mm, diameter of magnets, as cut by laser hole_d = 6 #mm, diameter of air hole s = 6 #mm, hex lattice side length (2xmag_d?) s32 = s*sqrt(3)/2. frame_inner = 60 #mm, radius / side length of inner hex of frame frame_inner_fillet = 10 #mm, fillet radius frame_outer = 80 #mm, radius / side length of outer hex of frame frame_outer_fillet = 20 #mm, fillet radius frame_bolt_d = 4.1 #mm, diameter of bolt holes wire_pitch = 2*.088 #mm, pitch, .088 = measured diameter (.080) + .008 mm slop (10% applied) N = 19 #number of turns, must be odd Nr = 4 #number of radial layers in the hex lattice lead_length = 20 #make frame frame = [] frame += filleted_hex(V2(0,0), frame_inner, frame_inner_fillet, 'frame') frame += filleted_hex(V2(0,0), frame_outer, frame_outer_fillet, 'frame') for i in range(6): v0 = .5*(frame_inner+frame_outer)*V2(cos(i*2*pi/6),sin(i*2*pi/6)) v1 = .5*(frame_inner+frame_outer)*V2(cos((i+1)*2*pi/6),sin((i+1)*2*pi/6)) frame += [ circle(v0, frame_bolt_d, 'frame'), circle(.5*(v0+v1), frame_bolt_d, 'frame'), ] #for each of the (2*Nr-1)*(Nr) points in the grid, what are the starting and ending angles coil_params=[ [(90,330), (150,30), (210,360+90), (270,360+30), (210,90), (270,30), (210,360+90), (150,270)], [(90,330), (270,360+150), (330,450), (270,150), (330,90), (270,360+150), (330,360+90), (150,270)], [(210,330), (360+150,270), (330,450), (270,150), (330,90), (270,360+150), (330,360+90), (150,270)], [(360+210,330), (150,360+30), (360+210,330), (270,150), (330,90), (270,360+150), (330,360+90), (150,270)], ] #make magnet grid, air holes, and coils crvs = []; crvs += [circle(V2(0,0),mag_d,'magnets_a')] for i in range(3): #3-fold angular symmetry vr = V2(cos(i*2*pi/3),sin(i*2*pi/3)) vth = V2(cos(i*2*pi/3+pi/2),sin(i*2*pi/3+pi/2)) vk = V2(cos((i+1)*2*pi/3),sin((i+1)*2*pi/3)) for j in range(Nr): for k in range(Nr+1): crvs += [circle(2*s32*vr*(j+1) + 2*s32*vk*k, mag_d, 'magnets_a')] if k<Nr: crvs += [ circle(2*s32*vr*(j+.5) + 2*s32*vk*k + .5*s*vth, mag_d, 'magnets_b'), circle(2*s32*vr*j + 2*s32*vk*k + s*vth, hole_d, 'holes'), ] #coils for l in range(N): dd = (l - (N-1)/2)*wire_pitch crvs += [ arc(2*s32*vr*(j+.5) + 2*s32*vk*k + .5*s*vth, s+dd, coil_params[k][2*j][0]+i*120, coil_params[k][2*j][1]+i*120,'coils' ) ] if j<Nr-1 or k>0: crvs += [ arc(2*s32*vr*(j+1) + 2*s32*vk*k, s+dd, coil_params[k][2*j+1][0]+i*120, coil_params[k][2*j+1][1]+i*120,'coils' ) ] #make traverses for l in range(N): dd = (l - (N-1)/2)*wire_pitch crvs += [ arc(2*s32*(vr+vk)*Nr, s+dd, 270+i*120, 180+i*120,'coils' ) ] crvs += [ arc(2*s32*vr*(Nr-1) + 2*s32*Nr*vk, s+dd, 270+i*120, 360+i*120,'coils' ) ] if l<N-1: crvs += [ arc(2*s32*vr*(Nr-.5) + 2*s32*Nr*vk - .25*wire_pitch*vr, s*(sqrt(3)-1)+dd+.5*wire_pitch, 180+i*120, 0+i*120,'coils' ) ] #make leads v0 = 2*s32*vr*(Nr-.5) + 2*s32*Nr*vk - .25*wire_pitch*vr r0 = .5*(s*(sqrt(3)-1) - N/2.*wire_pitch)*vr r1 = .5*(s*(sqrt(3)-1) + N/2.*wire_pitch)*vr crvs += [ line( v0-r0, v0-r0+lead_length*vth, 'coils' ), line( v0+r1, v0+r1+lead_length*vth, 'coils' ), ] if __name__ == '__main__': main()