Newer
Older
<!doctype html>
<html>
<link href="mystyle.css" rel="stylesheet" type="text/css">
<script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/latest.js?config=TeX-MML-AM_CHTML' async></script>
<script>
MathJax.Hub.Config({
tex2jax: {
inlineMath: [['$','$'], ['\\(','\\)']]
processEscapes: true
}
});
</script>
<article class="article">
<head>
<meta charset="utf-8">
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
</head>
<body>
<body class="body">
<center>
<h1>"The Rheoprinter": Online learning of printability conditions</h1>
</center>
<h2>Table of Contents</h2>
<p><a href="#TC1"><h3>1. Background</h3> </a></p>
<p><a href="#TC1.1"><h4>1.1 Motivation & Initial Project Idea: "A Desktop Rheometer?"</h4> </a></p>
<p><a href="#TC1.2"><h4>1.2 The Science of Rheology</h4> </a></p>
<p><a href="#TC1.3"><h4>1.3 Rheometers - Operating Principles</h4> </a></p>
<p><a href="#TC1.4"><h4>1.4 Neil: "Do you actually need classical rheometry to achieve what you want?"</h4> </a></p>
<p><a href="#TC2"><h3>2. Proposed System: "The Rheoprinter"</h3></a></p>
<p><a href="#TC2.1"><h4>2.1 The Nelder-Mead Algorithm</h4> </a></p>
<p><a href="#TC3"><h3>3. Design </h3></a></p>
<p><a href="#TC4"><h3>4. Rapid Prototyping</h3></a></p>
<p><a href="#TC4.1"><h4>4.1 System Modules</h4> </a></p>
<p><a href="#TC4.2"><h4>4.2 Final System</h4> </a></p>
<p><a href="#TC5"><h3>5. Test</h3></a></p>
<p><a href="#TC5.1"><h4>5.1 Online Rheoprinter Console</h4></a></p>
<p><a href="#TC5.1"><h4>5.2 Challenges & Next Steps</h4></a></p>
<hr>
<h3 id="TC1"> 1. Background</h3>
<h4 id="TC1.1"> 1.1 Motivation & Initial Project Idea: "A Desktop Rheometer?"</h4>
<p>$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$</p>
<ul>
<li><b> /{x^i}_2/ Material Measurements for the Masses</b></li>
<li><b>Understanding the Rheology of Complex Fluids</b></li>
</ul>
<center>
<p>
<figure class="figure">
<img src = 'images/yield-stress.jpg' width=100%>
<figcaption> Transforming a peptide gel (99% water) into a yield-stress material for 3D pritning.</figcaption>
</figure>
</p>
</center>
<ul>
<li><b>"YIELD STRESS":</b> An ever increasing viscosity as the shear rate approaches zero, i.e. does not flow/ solid-like when stationary</li>
<li><b>"ZERO-SHEAR VISCOSITY":</b> The viscosity plateau's as teh shear rate approaches zero, i.e. flows/ liquid-like when statioanry</li>
</ul>
<p>
My optimistic end goal for this project is the making of a suite of rheometers that will allows us to measure rheological material functions of different types of complex fluids (including the ones with temperature-dependent rheological properties) at the whole range of shear rates as it is depicted in the following figure:
</p>
<p>
So, the goal would be that if someone gives us a material or we have created our own material, we would be able to poulate the pomymer viscosity vs shear rate graph with points acrosss the whole range of shear rates and for different temperature conditions, if it has temperature-dependent rheological porperties. <br>
</p>
<p>
What about a **Confocal Parallel Plate or Extrusion Microrheometer** for studying behavior of Complex Fluids? <br>
Here is a nice paper: <a href = 'http://aip.scitation.org/doi/pdf/10.1063/1.4868688'> Lin & Cohen 2014 - Confocal Rheoscope</a>
<br>and
<br>here is a nice <a href = 'https://youtu.be/ppnie9Pj7xU'> video.</a>
</p>
I'm thinking about starting with a rotational rheometer
<ul>
<li><b>Components:</b></li>
<ul>
<li>Linear Actuator</li>
<ul>
<li>Z-axis</li>
</ul>
<li>Rotational Stage</li>
<ul>
<li>θ-axis</li>
</ul>
<li>Motor Controller x2</li>
<li>Dynamic Torque Measurement Device</li>
<ul>
<li><a href='https://gitlab.cba.mit.edu/calischs/loadcellFlexural Torque Sensor'> Sam</a></li>
</ul>
</ul>
</ul>
<center>
<p>
<figure class="figure">
<img src = 'images/dynamic-torque-meas.jpg' width = 100%>
<figcaption> Test Rig.</figcaption>
</figure>
</p>
</center>
<hr>
<ul>
<li><b>Material Measurements for the Masses</b></li>
<li><b>Understanding the Rheology of Complex Fluids</b></li>
</ul>
<h4 id="TC1.2"> 1.2 The Science of Rheology</h4>
<p>The measurement of rheological properties and the evaluation of fluid models require specific devices that can be summarized as *rheometers*. Rheology is concerned with the behavior of fluids undergoing deformation. This deformation can be shear, elongation, or a combination of deformations such as those occuring in the complex flow field within a mixer. An important aspect of rheology's scope is to find the relation between deformation and stresses for various well defined conditions, such as transient shear flows, step strain, creep and oscillatory shear flow . These relations also called *material functions* are determined using different types of rheometric techniques.</p>
<p> <b>Figure 1</b> below shows the rate of deformation achievable with the different measurement techniques. In addition, it explains how the rate of deformation corresponds to the time scale of the molecular movement . The diagram also relates the phenomena or properties under investigation and common polymer processes to the different test methods. slow deformations (on the left) only affect local molecular movement such as rotations , while fast deformations disentangle the molecular chains and allow for changes of location of whole molecular segments. The different time scales are also related to mechanical and failure behavior such as creep and impact.</p>
<p>Different manufacturing processes expose the material to varying shear rates. While thermoforming and extrusion subject the material to lower rates of deformation, the injection molding process exposes the polymer melt to rates of deformation as high as 10^5 s^-1 . </p>
<center>
<p>
<figure class="figure">
<img src = 'images/intro-steady-state.jpg' width=100%>
<figcaption> Complex Fluids. </figcaption>
</figure>
</p>
</center>
<b>Unsteady Shear Flow Behavior</b>
<ul>
<li>Viscosity is not only dependent on shear rate it is also time dependent</li>
<li>Think of paint: thick in the can when left i the shed for months, but thins when stirred</li>
<li>Think of paint: thick in the can when left i the shed for months, but thins when stirred</li>
<li>However, it is thixotropic as it does not rebuild straight away after stopping the stirring</li>
</ul>
<center>
<p>
<figure class="figure">
<img src = 'images/paint.jpg' width=100%>
<figcaption> Two samples...one very thixotropic, one not so thixotropic. Bad paint: leaves brush mark because it rebuilds too thick too quickly. Good paint: leaves smooth finish because it rebuilds quite slowly giving enough tiome to allopw ridges to smooth out. </figcaption>
</figure>
</p>
</center>
<h4 id="TC1.3"> 1.3 Rheometers - Operating Principles</h4>
<b>Commercial Rheometers</b>
<hr>
<center>
<p>
<figure class="figure">
<img src = 'images/TA.jpg' width = 100%>
<figcaption> Rotational rheometer designs at TA Instrumnets. </figcaption>
</figure>
</p>
</center>
<center>
<p>
<figure class="figure">
<img src = 'images/capillary-rheometer.jpg' width=30%>
<img src = 'images/INSTRONnew.jpg' width = 30%>
<figcaption> The Instron Capillary Rheometer.</figcaption>
</figure>
</p>
</center>
<b>Relating Instrument Specifications to Material Properties</b>
<hr>
<p>The measured qunatity (angular deformation and torque) are transferred into a material quantity (stress, strain, viscosity, etc.)</p>
<center>
<p>
<figure class="figure">
<img src = 'images/measured-calculated.jpg' width = 100%>
<figcaption> INstrument specific measured quantities are used to calculated material-specific parameters.</figcaption>
</figure>
</p>
</center>
<p>Geometry specific constants relate the measured instrument data with the desired material parameter.</p>
<b>Fluid Dynamics of Rotational Rheometry</b>
<hr>
<center>
<p>
<figure class="figure">
<img src = 'images/parallel-plate-geometry.jpg' width = 100%>
<figcaption> Working Equations for rotational rheometers with <b><i>parallel plate geometry </b></i>.</figcaption>
</figure>
</p>
</center>
<p>Thus, by varying the shear rate and measuring teh change in torque, the viscosity may be determined explicitly.</p>
<b> Notes on Experimental Procedures:</b>
<p>The most important thing is the fundamental resolution of the instrument itself since this will dictate our primary measurements. Stress and strain are not measured directly. Important assumptions are required ot convert primary measurements to material functions. You can only measure certain dynamic ranges of torque, displacement and frequencies. You have resolution limits in either of these quantities you can propagate through to the resolution o fthe viscosity that you can measure.</p>
<ul>
<li>Resolution/range of measured load and displacement</li>
<li>Instrument inertia (if load and displacement are measured on same boundary)</li>
<li>Fluid inertia and secondary flows</li>
</ul>
<h3 id="#TC1.4"> 1.4 Neil: "Do you actually need classical rheometry to achieve what you want?"</h3>
<h3 id="TC2"> 2. Proposed System: "The Rheoprinter"</h3>
<center>
<p>
<center><p title="Main-idea">Can the rheometer be the printer as well?</p></center>
<video width = "900" height = "800" controls loop autoplay>
<source src= "videos/Main-idea.mp4" type="video/mp4">
</video>
</p>
</center>
<h3 id="TC3"> 3. Design</h3>
<center>
<p>
<figure class="figure">
<img src = 'cad/x-axis.PNG' width = 100%>
<figcaption> Mini Linear Axis.</figcaption>
</figure>
</p>
</center>
<center>
<p>
<figure class="figure">
<img src = 'cad/exploded-view-xy-stage.PNG' width = 100%>
<figcaption> Assembly.</figcaption>
</figure>
</p>
</center>
<center>
<p>
<figure class="figure">
<img src = 'cad/assembly-xy-stage.PNG' width = 100%>
<figcaption> Assembly.</figcaption>
</figure>
</p>
</center>
<center>
<p>
<figure class="figure">
<img src = 'cad/assembly-xy-stage-back-view.PNG' width = 100%>
<figcaption> Assembly.</figcaption>
</figure>
</p>
</center>
<hr>
<center>
<p>
<figure class="figure">
<img src = 'cad/coupling.PNG' width = 60%>
<img src = 'cad/coupling-misalignment.PNG' width = 60%>
<figcaption> Challenges.</figcaption>
</figure>
</p>
</center>
<h3 id="TC4"> 4. Rapid Prototyping</h3>
<h4 id="TC4.1"> 4.1 System Modules</h4>
<hr>
<ul>
<li><b>Mini XY-stage</b></li>
</ul>
<center>
<p>
<figure class="figure">
<img src = 'images/IMG_0319.png' width = 60%>
<figcaption> Parts.</figcaption>
</figure>
</p>
</center>
<center>
<p>
<figure class="figure">
<img src = 'images/IMG_0320.png' width = 60%>
<img src = 'images/IMG_0321.png' width = 60%>
<img src = 'images/IMG_0322.png' width = 60%>
</figure>
</p>
</center>
<hr>
<ul>
<li><b>Syringe Pump</b></li>
</ul>
<hr>
<ul>
<li><b>USB cmaera frame</b></li>
</ul>
<hr>
<h4 id="TC4.2"> 4.2 Final System</h4>
<center>
<p>
<figure class="figure">
<img src = 'images/rheoprinter-front.jpg' width=80%>
<img src = 'images/rheoprinter-top.jpg' width=80%>
<img src = 'images/rheoprinter-zoom-camera.jpg' width=80%>
<img src = 'images/rheoprinter-3d.jpg' width=80%>
<figcaption> The Rheoprinter. </figcaption>
</figure>
</p>
</center>
</body>